}
static vg_rand;
-static void vg_rand_seed( unsigned long seed )
-{
+static void vg_rand_seed( unsigned long seed ) {
/* set initial seeds to mt[STATE_VECTOR_LENGTH] using the generator
* from Line 25 of Table 1 in: Donald Knuth, "The Art of Computer
* Programming," Vol. 2 (2nd Ed.) pp.102.
/*
* Generates a pseudo-randomly generated long.
*/
-static u32 vg_randu32(void)
-{
+static u32 vg_randu32(void) {
u32 y;
/* mag[x] = x * 0x9908b0df for x = 0,1 */
static u32 mag[2] = {0x0, 0x9908b0df};
/*
* Generates a pseudo-randomly generated f64 in the range [0..1].
*/
-static inline f64 vg_randf64(void)
-{
+static inline f64 vg_randf64(void){
return (f64)vg_randu32()/(f64)0xffffffff;
}
-static inline f64 vg_randf64_range( f64 min, f64 max )
-{
+static inline f64 vg_randf64_range( f64 min, f64 max ){
return vg_lerp( min, max, (f64)vg_randf64() );
}
-static inline void vg_rand_dir( v3f dir )
-{
+static inline void vg_rand_dir( v3f dir ){
dir[0] = vg_randf64();
dir[1] = vg_randf64();
dir[2] = vg_randf64();
+ /* warning: *could* be 0 length.
+ * very unlikely.. 1 in (2^32)^3. but its mathematically wrong. */
+
v3_muls( dir, 2.0f, dir );
v3_sub( dir, (v3f){1.0f,1.0f,1.0f}, dir );
v3_normalize( dir );
}
-static inline void vg_rand_sphere( v3f co )
-{
+static inline void vg_rand_sphere( v3f co ){
vg_rand_dir(co);
v3_muls( co, cbrtf( vg_randf64() ), co );
}
+static void vg_rand_disc( v2f co ){
+ f32 a = vg_randf64() * VG_TAUf;
+ co[0] = sinf(a);
+ co[1] = cosf(a);
+ v2_muls( co, sqrtf( vg_randf64() ), co );
+}
+
+static void vg_rand_cone( v3f out_dir, f32 angle ){
+ f32 r = sqrtf(vg_randf64()) * angle * 0.5f,
+ a = vg_randf64() * VG_TAUf;
+
+ out_dir[0] = sinf(a) * sinf(r);
+ out_dir[1] = cosf(a) * sinf(r);
+ out_dir[2] = cosf(r);
+}
+
#endif /* VG_M_H */